

From CAD to Chip in One Simple, Reliable Step

PEN Natural makes biocompatible clear parts with precise dimeions and low particle adsorption.

Chips are ready to use straight from the printer.

From prototype to production,

microfludic manufacturing is as simple as design, & click "print".

Biocompatibility

- · USP 88 Class VI
- · USP 87
- · ISO 10993-4, -10
- · ADCF

One Step Fabrication

Enables out-of-the-cleanroom fabrication of robust, affordable microfluidic and millifluidic chips with:

- · Burr-free channels
- · Liquid-tight devices, tested to 5 bars
- · No post-processing

Reliable & Resilient

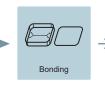
The most chemically resistant, translucent 3D printing material on the market

ISO 10993 - 4 ISO 10993 - 10

· Able to incorporate PVDF membranes into chips

Production Steps Comparison

FDM 3D Printing (PEN-Natural)


Soft Lithography (PDMS)

	FDM 3D Printing (PEN-Natural)	FDM 3D Printing (COC)	Resin 3D Printing (PMMA)	Soft Lithography (PDMS)
Steps	1: CAD→Chip	1: CAD→Chip	4: CAD→Print→Cleaning→ UV Cure→Chip	4~8: CAD→Mask→Mold→ Lithography→Cast→ Demold→Bonding→Chip
Processing Challenges	Solved: •Solvent-tight prints up to 5 bar •Channel resolution down to 150 µm (width)	Weak interlayer sealing Poor bed adhesion Hard to achieve liquid-tight	Resin can block the channels Warping after UV cure Brittle	Alignment and bound failures PDMS swelling Requires cleanroom
Feature Size (Channel Width)	150 - 200 μm	300 - 500 μm	100 - 200 μm	20 - 100 μm
Labor	Minimal (Prints easily)	Minimal (Hard to dial in)	Moderate (Needs multiple post-processing steps)	Very high (Multiple complex steps required)
Transparency	Moderat (Visibly clear; slight distortion o	-	Excellent (Optical clarity)	Excellent (Brightfield) (Potential issue: Autofluorescence)
Temperature Range	-20°C - 120°C	-20°C - 75°C	5°C - 60°C	-50°C - 100°C
Chemical Resistance	Excellent (Resistant to alcohols, organic solvent, acids, bases)	Good (Resistant to alcohols, acids, bases; may swell in polor organics and aromatics)	Moderate (Resistant to water, alcohols; swell or cracks in some organics)	Poor-moderate (Swells in organics and leaches uncured material)

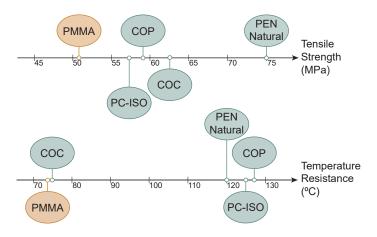
Applications

PEN-Natural microfluidic chips combine high chemical and thermal resistance with sufficient clarity, enabling:

Inert reaction channels for reliable analytical and synthetic processes.

· Drug Discovery & Microreactors

Continuous-flow and microscale batch reactions for rapid screening and synthesis.


· Diagnostics

Devices for water testing, pathogen detection, and biochemical assays with sufficient channel visibility.

Electrochemistry

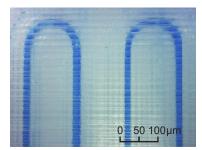
Stable platforms for electrode integration in sensors, corrosion testing, and electrosynthesis.

Material Properties Comparison

Chemical Resistance Chart

Organic Solvent	PEN	Inorganic Solvent	PEN
Acetic acid (20%)	Α	Ammonium chloride (25%)	Α
Acetone	В	Ammonia aq. (28%)	С
Alcohols	Α	Hydrochloric acid (37%)	Α
Chloroform	С	Hydrogen peroxide (30%)	Α
Dimethyl sulfoxide (D	MSO) C	KOH (30%)	В
Ethers	Α	NaCl sat. solution	Α
Ethyl acetate	Α	NaHCO3 sat. solution	Α
Gasoline	Α	NaOCI	Α
Hexane	Α	NaOH (30%)	Α
Methyl ethyl ketone (I	MEK) A	Nitric acid (20%)	Α
Toluene	Α	Sulfuric acid (10%)	Α
Posistance at 22°C immerced for	20 days Panking defin	aition:	

Resistance at 23°C, immersed for 30 days. Ranking definition: A: weight change < 1%, tensile > 95%

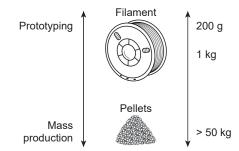

C: weight change > 10%, tensile < 75%

B : weight change between 1~10%, tensile > 75%

D : dissolved or swelled

Printing Parameters

Nozzle size: 0.2 - 0.4 mm 0.05 - 0.2 mm Layer height: Nozzle temperature: 270 - 285 °C Bed temperature: 70 - 100 °C Min. channel width: 150 µm Printing speed: Min. channel depth: 100 µm 35 - 100 mm/s Part cooling fan: 0 - 30 % Surface roughness: Ra < $5 \mu m$



▲ Fluid channel at 12X magnification

Printing Services & Quality

- · Flexible runs from 6 to 10,000 chips
- · Multi-material 3D printing available
- · PVDF membrane integration available
- · Non-destructive ultrasound leak tests
- · Packaging with traceability

Material Format

We're here to accompany you on your scientific journey by providing materials you can trust. If you need assistance, simply reach out at hello@flxr.engineering.

FLXR Engineering Co., Ltd.

1 & 2F, No. 11-1, Wuquan 1st Road, Xinzhuang District, New Taipei City 24892, Taiwan

+886-2-22901122 https://www.flxr.engineering www +886-2-22995222 hello@flxr.engineering

盈豐材料股份有限公司 24892新北市新莊區五權一路11-1號1、2樓

